
Security Audit and Testing Report for Example
5/26/2017

---CONFIDENTIAL---

www.securityandpentesting.org
auditor@securityandpentesting.org

VyperLabs™ ALL RIGHTS RESERVED

http://www.securityandpentesting.org/
mailto:auditor@securityandpentesting.org

Table of Contents

➢ Summary of Performed Operations

➢ Vulnerabilities Found By Severity and Classificcation

➢ Technical Details of Performed Operations

➢ Technical Details of Discovered Insecurities and Remediation

➢ Glossary

Summary of Performed Operations

Project request date: 05/21/2017
Project start date: 05/22/2017
Project completion date: 05/26/2017

Project order #: 1705596
Rev: 0
Assigned pen-tester: Dexter Morgan

Hosts tested: httpps://www.example.com/
Testing scope: *
Exempt from testing: /admin/, /conficdential/, /documents/
Testing insight level: black-box

Tests performed:

➢ Injection attpacks (XSS and SQL injections)
➢ Searches for sensitive data exposure/leaks
➢ Brute-forcing login credentials and authentication security
➢ Security misconficgurations
➢ Access control flaaws

Tests omittped (outside of customer-deficned testing scope):

➢ Social engineering
➢ Zero-day exploitation
➢ PHP and OS command injections
➢ Header injections

https://www.example.com/

Vulnerabilities Found By Severity and Classificcation

Severity:

Severity Description Number of found
vulnerabilities

Patched

HIGH Thee security flaaw can
allow account
hijacking, backdoor
access, e.t.c.

1 0/1

MEDIUM Thee security flaaw is
difficcult to take
advantage, has a low
likelihood of
occurrence, or only
has mild
consequences.

1 0/1

LOW Thee security flaaw is
mostly harmless, but
should be remedied
for good practice.

1 0/1

Classificcation:
Type QTY Found

Code injection 1 (High)

Insecure authentication 1 (Medium)

Sensitive data exposure 1 (Low)

Technical Details of Performed Operations
(Page 1 of 6)

Simulated attpack type: cross-site scripting (XSS)

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

➢ httpps://www.example.com/account/send_message.php

➢ httpps://www.example.com/account/check_inbox.php

Testing process:

Thee simulated XSS attpacks performed involved iterating through every HTTP
request header, GET parameter value, POST parameter value, and HTTP request trailer
and replacing them with malicious values designed to probe for an XSS vulnerability.
Every such parameter value on each of the aforementioned URLs was thoroughly tested.

Thee parameters are modificed one at a time, with only 1 modificed parameter per
request, and all non-edited parameters remaining as what they would normally be,
designed to ensure that the server-side scripts would be unlikely to “break” before the
vulnerability would be revealed.

https://www.example.com/account/check_inbox.php
https://www.example.com/account/send_message.php
https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Performed Operations
(Page 2 of 6)

Simulated attpack type: SQL injections

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

➢ httpps://www.example.com/account/send_message.php

➢ httpps://www.example.com/account/check_inbox.php

Testing process:

Thee SQL injection tests were done with a combination of semi-automated and
automated tools. Every GET and POST parameter was tested with SQL injection attpack
strings with an automated tool. A semi-automated tool was also used to attpempt to
perform SQL injection attpacks on web pages that appear to perform SQL queries or
commands.

https://www.example.com/account/check_inbox.php
https://www.example.com/account/send_message.php
https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Performed Operations
(Page 3 of 6)

Simulated attpack type: searches for sensitive data exposure/leaks

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

➢ httpps://www.example.com/account/send_message.php

➢ httpps://www.example.com/account/check_inbox.php

Testing process:

Searches for sensitive data were done in a number of ways. Thee web application
was brute-forced for hidden (and probably sensitive URLs), and in addition, the HTML
pages were scraped via regular expressions to ficnd sensitive information such as
passwords.

https://www.example.com/account/check_inbox.php
https://www.example.com/account/send_message.php
https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Performed Operations
(Page 4 of 6)

Simulated attpack type: Weak Authentication

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

Testing process:

Thee login form was brute-forced using a “dictionary” of common passwords, with
usernames that were scraped from the website. Password requirement security was
manually evaluated. Thee “change password” and “change email” forms were also brute-
forced to see if one could reset someone else’s password or email.

https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Performed Operations
(Page 5 of 6)

Simulated attpack type: Security misconficgurations

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

Testing process:

Cookies were examined to ensure they were secured properly (via the “HttppOnly”
and “Secure” flaags). Sensitive forms were also manually examined to see if they could be
forged in cross-site requests (“cross-site request forgery”) or manipulated with
“clickjacking”. Various other such miscellaneous tests were performed.

https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Performed Operations
(Page 6 of 6)

Simulated attpack type: Access control flaaws

URLs tested:

➢ httpps://www.example.com/login.php

➢ httpps://www.example.com/register.php

➢ httpps://www.example.com/reset.php

➢ httpps://www.example.com/account/change_password.php

➢ httpps://www.example.com/account/change_email.php

Testing process:

Thee authentication processes were manually reviewed for miscellaneous design
flaaws that could allow someone to gain unauthorized access to other accounts, or account
functionalities, e.g a web-server script relying on client-side validation before allowing it
to perform a critical function, employing weakly-implemented cryptography, or
predictable session-related cookies.

Thee account-creation process was also reviewed, as well as the security of the
CAPTCHA mechanism for defending against the creation of automated bot accounts.

https://www.example.com/account/change_email.php
https://www.example.com/account/change_password.php
https://www.example.com/reset.php
https://www.example.com/register.php
https://www.example.com/login.php

Technical Details of Discovered Vulnerabilities and
Remediation
(Page 1 of 3)

Vulnerability type: XSS injection
Vulnerability severity: HIGH
Vulnerable page: /account/send_message.php

Potential consequences of exploitation:

A registered account is able to “inject” HTML or Javascript code into a message,
which then renders or executes when the recipient reads it, in their inbox. Theis may allow
the attpacker to do things such as hijack session cookies or make requests to other
sensitive functions on the web-server, such as to account/change_email.php or
account/change_password.php.

Recommended remediation:

Edit the PHP code in /account/send_message.php. Thee “message_content”
parameter should be “sanitized” before the message_content is writtpen into the database
(or however it’s stored on the web-server). Theis means that the “<” and “>” symbols
should be replaced with “<” and “>” symbols, respectively. To be safe, I recommend
also encoding the following characters: <, >, &, ", ', \, and =

Technical Details of Discovered Vulnerabilities and
Remediation
(Page 2 of 3)

Vulnerability type: Insecure authentication security
Vulnerability severity: Medium
Vulnerable page: /account/register.php

Potential consequences of exploitation:

Thee password requirement security isn’t as good as it could be. Although the
person who designed it was wise to require registered users to use a password that
involves 1 punctuation mark and 1 number, this is still far too predictable. Almost
everyone who selects a password under such requirements, will choose a password that
ficts the following format:

[word or name] + [punctuation] + [number]

Moreover, the “word or name” is usually something predictable or related to the
purpose of the website itself. Thee punctuation is usually a ! or ? or a . And the number
usually just starts at 1, and maybe it’ll go higher if the registered user is required to
update his password on a regular basis.

And I know people do this, because I used to work at a company where everyone
knew each-other’s passwords. And 9 out of 10 people used a password that followed that
same format. Theis makes the passwords easy to guess if an automated tool is used, that
generates such passwords programatically.

Recommended remediation:

Make it so the usernames are hidden, so someone brute-forcing the logins will
need to know the usernames, as well. Theis will make it exponentially more difficcult to
guess. Or just make the passwords require that at least 1 punctuation or digit is in the
middle of the string, somewhere, rather than just predictably at the end.

Technical Details of Discovered Vulnerabilities and
Remediation
(Page 3 of 3)

Vulnerability type: Sensitive data exposure leak
Vulnerability severity: Low
Vulnerable page: /login.php

Potential consequences of exploitation:

Someone may discover the email address of the web-developer who worked on the
login page. It could potentially be then used for social engineering.

Recommended remediation:

Thee email address walterwhite@yahoo.com was found in the comments of the
login page, in a context that implies this email address belongs to a web developer. Just
remove it from the comments.

mailto:walterwhite@yahoo.com

Glossary

Vulnerability ranking:

Low: A security weakness which, by itself, is generally hard to exploit or relatively
harmless. However, such flaaws should not be taken lightly or ignored, lest a skilled
adversary ficnds a way to use it in conjunction with other flaaws to pull off something more
malicious. Examples include: emails or internal IP address leaks, CAPTCHAs which are
easy to programatically solve (allowing for the creation of bots, if an adversary is
dedicated enough to doing so), or the HTTP TRACE header being enabled on the server.

Medium: A security flaaw that can be exploited, either resulting in medium-severity
consequences, or it could just be that the flaaw itself is relatively hard to take advantage
of. A vulnerability that has a low likelihood of occurring or has a bearable impact.

High: Any vulnerability that can be exploited to gain access to a functionality they
shouldn’t have access to, unless the functionality itself is trivial or harmless. If the worst
a person can do with the vulnerability is pull off a harmless prank, it will not be rated as
“high” severity. Theis rating is reserved for things that have a reasonable potential to be
exploited and also high impact.

Vulnerability classificcations:

Clickjacking:
httpps://en.wikipedia.org/wiki/Clickjacking

Command injection:
httpps://owasp.org/www-community/attpacks/Command_Injection

CSRF (cross-site request forgery):
httpps://en.wikipedia.org/wiki/Cross-site_request_forgery

SQL injections:
httpps://en.wikipedia.org/wiki/SQL_injection

XSS (Cross-site scripting):
httpps://en.wikipedia.org/wiki/Cross-site_scripting

https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://owasp.org/www-community/attacks/Command_Injection
https://en.wikipedia.org/wiki/Clickjacking

